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ABSTRACT

In this paper, we prove some results concerningetegerse derivations on semi primerings are predente
We prove that let d be a commuting reversed eowatif a semi primering R. ThemJA (d) if and only ifadZ and

ad(x2=0, for all xOR
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INTRODUCTION

I.N.Herstein [4]has introduced the conceptf gevase deivations of prime rings and poved that anozero
revased a@ivation] of a rimering Aisa commutative inteagl domain andl is an adinary deivation d A. Late Bresar
andVukman[2] havestudied the notion forevased eivation andsome popaties of revased eivations. M. Samman and
N. Alyamani[6] havestudiedsome popeties of revesed eivations on semi primering s and poved that amappind on &
emiprimering R is are vase deivation if and only f, it is a cental deivation. Also proved thatfi a pimering R admia
nonzeo revase deivation, then R is commutative. K. Suvana and D.S. Irfana [7] studied some popeties
of derivation so n semi pimerings. Laradji and Thaheer5] first studied the dependent elemgim endomeophisms of
semiprimerings and genmalized a numbeof results of [3] for semiprimerings. Ali and Chaudty [1] investigated the

decompaition of asemiprimering R using dependent elemesf a commuting dévationd.
Preliminaries

An additive mamd fromaing R to Ris called a davation if d(xy) =d(x)y+xd (y)for all x, yi n RAn additive
mapd from aring R to R is called are vase deivation if d(xy) =d(y)x+ yd(x)for all x, y in RA mappingd:R- Ris

called commuting derivatiorf[d(x), x] =0, for all x in RA mappingd:R- Ris called commuting reverse derivation if

[x, d(x)] = 0, for all x in R.A ring R is called semi prime if x ax = 0 impligs= 0 for all X, a in R. Ttough out ths

papeRwill denote & emiprimering, D (d) isthe collection dall dependent elemeswf d andZ its cente.
MAIN RESULTS

Theoreml: If d isa commuting in neevase deivation on & emiprimering R, thend=0. Now, we prove the

following result:

Theorem2: Let dbea commutig revased @ivation d a semigrimering R Thena [ D(d).

if and only f ablZ and

ad(x%)=0, for all xOR.

Proof: LetallD (d). Then,
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ad(X)=a[x, a],forallxOR

If wereplacex by yxin equ(l), thenwe get,

=ad (yx) =alyx, a

=a(d(y) x+yd(x) =a(y[x, a]+[y, a]x)

= ad(y) x+ ayd(X)=ay[x, a]+a[y, a]x,forallx,y OR
From equ's (1) and(2), we get,

=aly, a] x + ayd(x) =ay[x, a]+aly, a]x
= ayd(X)=ay[x, a],forallx,y OR

If we multiply equ(3) by zon the Idt, thenwe get,
= zayd(x)= zay[Xx, a]

By replacingy by z y in equ.(3), we get,

= azyd (X)=azy [x, a]

By subtracting equ(5) Fromequ.(4), we get,
=zay(x) — azyd(x)=zay [x, a]-azy [x a]

= (za -—az)yd(x)=(za-az)y[x a]

=[z alyd(x)=[z, a]y[x, &]

By multiplying equ(6) by x on theright, we get,
=[z, alyd(X)x=[z, a] y[x, a]x

If wereplacey by yx in equ.(6), thenwe get,

=[z a] yd(x)=[z a]yx [x, a]

By subtracting equ(7) from equ(8), thenwe get,

=[z, a]yxd(X) ~[z, a]yd(X)x=[z, a] yx[x, a] -[z a]y[x, a]x

=[z, aly(xd (X) —d(x)x)=[z a]y(x[x, a]-[x a]Xx)

=[z, a]y[x, d(x)]=[z a]y[x[x all

Sincedis commuting from eq.(9), we get,

=[z a]y[x[x, a]] =0

If we multiply equ{10)byZon the Idt, thenwe get,

D

@

©)

(4)

©)

(6)
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=2z[z, a]y[x[x, a]] =0 (11)
Now we replaceYby@in (10), thenwe get,

=[z, alzy[x[x a]] =0 12
By sub tracting equl2)from equ(ll), then

=2[z, aly[x[x all-[z a] zy [x[x a]] =0

= (z[z, al-[z, a]2)y[x[x a]]=0

=[z[z a]]l y[x[x a]] =0

ReplacébyXin the above equation, there get,

=[x[x ally[x[x a]] =0

By using thesemi primenes sof R, we get,

=[x [x a]] =0, forallxOR (13)
Thus the inne derivationd : R— Rdefined by (X) =[X, aliscommuting.

Hencdl (X) =ObyTheaem:1whichimpliesX, @] =0 Thusal Z Further from

Equ (1),we getad(X)=0,

Now ad (x2)= a(d (x)x + xd (X))
=ad(x) x+ad (¥)

=axd(x), gnceallZ

= xad (x)

Therefore, ad(x2) = 0

Convesely, leta1Z andad(xz) =0. Then,ad(xz) =0impliesad(x) x+axd (X)=0.
Sinced iscommutingad(x) x+ad (X)x=0

= 2ad(x) x=0

Since Ris of cha #2,ad(x)x=0.

By multiplying the above equation laygl(x)on theright, we get,

Ad (X)xad(x)=0.

SinceRis £mi pime, thenad(x)=0=a[Xx, a].
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HenceaD (d)

This completa the poof of the theoem.
Corollaryl: LetRbe asemi grimer in g andla commutingevese deivation d R.Leta D(d) . therfl(2)=0,

Proof: SincealD (d), then

ad(x2)= Oimpliesad(x)=0, forall x O R (14)
Wereplacex by d(x)in equ.(14), then

= ad(d(x))=0

— ad?(x)=0, forallx O R (15)
From equ(14), we get,
=d (ad(x)) =0

= d (0) =0, which implies that,

—d(x) d (a) +ad?(x)=0

By using equ(15),we get,

=d(x) d(a)=0 (16)
Wereplacex by xain equ.(16) And wsing equ.(16) again,we get,

=d(xa)d(@ =0

= (d (a) x+ad (x))d (a) =0

=d (a) xd(a) +ad(x)d(a)=0

=d (a) xd(a)=0, forall xOR

By using thesemi primenes sof R, we get,d(a)=0.

Corollary2: Let R be & emiprimering andda commutingeveased eivation d R. Then D (d)is a commutative

semi rime subring of R.

Proof: Let a, bOD (d).Then by Theem: 2, a, blZ, ad(x) =0 and bd(x)=0, For all x(OR. Obviously
a—b 0Z and abd(x)= 0.So0,a— bandab (1 D(d).

Sincea, b 0 Z,s0,ab= ba .ThusD(d)isacommutativeubringofR. ToshowsemiprimenessofD(d), we  corsider
aD(d)=0,al0D(d). Thenaxa=0, for all x 0 D(d) .

In paticular a3= 0, which implies a= 0 becawe R has no cental nil potens. Thus D(d) isa commutativesemi

prime subring of ring R.
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Corollary3: Let Rbe a commutativeemiprimering andd are vase deivation d R. ThenD(d)isan ideal 6R.

Proof: Since R is commutative,so, d is commuting. Leta, b D(d).Then by Coollary:2,a—b [ D(d) .Let
allD(d) andr OR. Thenad(x)=0, for all x( R.Thusrad(x)= 0.Sincear=ra,sorad(x)= ard(x)= 0,forallx 0 R.Hence

ar=rall D(d). ThuisD(d) isan ideal 6R.

Remark 1: If Risas emigrimering andU an ideal 6 R, then it b easy to veify thatU is as emi gime subring of
RandZ(U)OZ. g

Remark 2: If disa commutingevease deivation onR andald D(d) . Then by Theem:2,
Ad (x) =0,forallx(] R.ThisimpliesO = ad(xy)=ad(y)x +ayd(X)=ayd(x),
Which gives ayd (x)=0.Thusd (x)ayd (x)a= 0 ,forallx,y (0 R, which by
Semi primenessof Rimpliesd(x) a=0
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